LIEBAU, F. (1966). Fortschr. Min. 42, 266.

LIEBAU, F. (1970). In Vorbereitung.

LIEBAU, F., BISSERT, G. & KÖPPEN, N. (1968). Z. anorg. allg. Chem. 359, 113.

LIEBAU, F. & HESSE, K. F. (1969). Naturwissenschaften 56, 634.

MIRKIN, J. L. (1964). Handbook of X-ray Analysis of Polycrystalline Materials. New York: Consultants Bureau. PREISINGER, A. (1962). Naturwissenschaften, 49, 345. RINGWOOD, A. E. (1967). *Earth Planet. Sci. Letters*, **2**, 255. RINGWOOD, A. E., REID, A. F. & WADSLEY, A. D. (1967) *Acta Cryst.* **23**, 1093.

SMITH, J. V. & BAILEY, S. W. (1963). Acta Cryst. 16, 801.

STISHOV, S. M. & BELOV, N. V. (1962). Doklady. Akad. Nauk SSSR, 143, 951.

STISHOV, S. M. & POPOVA, S. V. (1961). *Geokhimiya*, 837. Völlenkle, H., Wittmann, A. & Nowotny, H. (1963). *Mh. Chem.* **94**, 956.

Acta Cryst. (1970). B26, 240

The Crystal Structure of 1,8,15,22-Tetra-aza-2,7,16,21-tetra-oxocyclo-octacosane, a Cyclic Dimeric Model of Nylon 66*

BY MAURITS G. NORTHOLT

Mellon Institute of Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, U.S.A.

(Received 28 May 1969)

The crystal structure of 1,8,15,22-tetra-aza-2,7,16,21-tetra-oxocyclo-octacosane has been solved by direct methods using X-ray intensity data and refined by methods of full-matrix least squares. The crystals are monoclinic, space group $P2_1/c$, with cell dimensions a=9.732 (4), b=24.951 (8), c=10.845 (4) Å, $\beta=92^{\circ}15'$ (2'). The final R value for 2363 observed reflections is 4.5%. All the hydrogen atoms were found and included in the refinement. The four molecules in the unit cell comprise pairs of two conformational isomers. The molecules are 28-membered rings, which are approximately rectangular in shape and lie on symmetry centers. Linked together by N-H---O=C hydrogen bonds, they form sheets parallel to the (010) plane.

Introduction

This investigation is the second in a series of X-ray crystallographic studies of oligomeric models of polyamides. These studies are important because they provide an insight into the conformational aspects of both molecular 'rings' of large size and the related high polymers.

In the description of these oligomers of polyamides, it is convenient to use the symbolism of Zahn, Rahtgeber, Rexroth, Krzikalla, Lauer, Miró, Spoor, Schmidt, Seidel & Hildebrand (1956), who designate the adipic group – $CO(CH_2)_4CO$ – by A and the hexamethylenediamine group – $NH(CH_2)_6NH$ – by B. The crystal-structure determination of the cyclic monomer of nylon 66, $c[B-A]_1$, has been described recently (Northolt & Alexander, 1968). In the present investigation we report the crystallographic study of the cyclic dimer cyclo-bis(hexamethylene-adipamide), $c[B-A]_2$, with the formal configuration

The preparation of this oligomer has been described by Zahn & Schmidt (1959).

Experimental

The sample was supplied by H. Zahn of the Technische Hochschule, Aachen and suitable crystals were grown from a water solution. Weissenberg and precession photographs showed the crystals to be monoclinic and gave preliminary unit-cell dimensions that agreed with the values measured by von Dietrich, Zahn & Schmidt (1957). The cell constants were refined by least squares based on diffractometric measurement of the 2θ angles of 16 reflections. The cell constants are listed in Table 1 together with other crystallographic data.

^{*} This investigation was supported in part by Public Health Service Grant GM-12396 from the National Institutes of Health.

The crystal selected for intensity measurements had dimensions $0.09 \times 0.25 \times 0.68$ mm. The crystal was mounted on a small glass fiber with a drop of glyptal and aligned along [101]. The intensity data were collected with a General Electric automatic single-crystal

Table 1. Crystal data

1,8,15,22-Tetra-aza-2,7,16,21-tetra-oxocyclo-octacosane, $C_{24}H_{44}N_4O_4$ M.W. 452·64, m.p. 233 °C Space group *P*2₁/c *a*= 9·732 (4) Å *b*=24·951 (8) *c*=10·845 (4) β =92° 15' (2') *D_m*=1·15 (1) g.cm⁻³, *D_x*=1·15 g.cm⁻³ for *Z*=4 *F*(000) = 992 Absorption coefficient for X-rays (λ =1·5418 Å): μ =6·34 cm⁻¹ Habit: Colorless, lath-shaped with longest dimension along [101]

Fig. 1. Projection on the least-squares plane through the atoms in the ring and labeling of the atoms. Numbers indicate perpendicular distances from the plane in $Å \times 10^2$.

MOLECULE I

C(8) +61

C(10) + 16

C(12) -48

C(7)

C(6') -16

2Å

+63

diffractometer fitted with a scintillation counter. Nickel-filtered Cu K α radiation together with pulse-height discrimination was used in conjunction with the θ -2 θ scan technique. The scanning speed was 2° min⁻¹ and the scan range was 3°. The background was measured at the beginning and the end of the scan range for a period of 20 sec. The intensities in a quarter of the reflection sphere were measured up to $(\sin \theta)/\lambda = 0.5145 \text{ Å}^{-1}$, yielding a total of 2881 nonequivalent reflections.

Details of the procedure followed for data gathering and processing to observed structure factors have been presented elsewhere (Northolt & Alexander, 1968). A reflection was classed as unobserved when $I < 1.5 \sigma_I$. Standard propagation-of-error methods were used to calculate $\sigma(F_o)$ from $\sigma(I)$. In the least-squares refinement of atomic parameters only observed reflections were used, the function minimized being $\Sigma w(F_o - F_c)^2$.

No corrections were made for absorption, and because of the lack of systematic discrepancies between the observed and calculated structure factors of the strongest reflections, it was decided that no corrections for primary and secondary extinction were necessary. The computations of the Fourier syntheses and the initial least squares were performed on an IBM 7090 computer using the X-ray 63 programs system (Stewart & High, 1965). The final refinements were carried out on an IBM 360 computer.*

Solution by symbolic addition

The structure was solved with the symbolic addition method for centrosymmetric crystals (Hauptman & Karle, 1953) using a program developed by S.R. Hall. The program determines preliminary scale and temperature factors and reduces the structure factors to normalized structure factors (E values). The atomic scattering factors used in the calculations were those of Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955) for oxygen, nitrogen and carbon. and of Stewart, Davidson & Simpson (1965) for hydrogen. The values calculated for the distribution and statistics of |E| for this structure, together with the corresponding theoretical values (in parentheses) as calculated by Karle, Hauptman, Karle & Wing (1958), are: $\langle |E| \rangle = 0.775 \ (0.798), \ \langle |E|^2 \rangle = 1.006 \ (1.000), \ \langle |E^2 1|\rangle = 1.034$ (0.968); reflections with |E| > 3 were $0.90/_{0}$ (0.3%), reflections with |E| > 2 were 5.1% (5.0%), and reflections with |E| > 1 were 28.8% (32.0%).

A manual symbolic addition procedure was applied to the 122 reflections with $|E| > 2 \cdot 1$, using the results of a search carried out by the program for sets of reflections that satisfy the Σ_2 relationship. The three origindefining reflections were selected from among reflections that did not belong to the parity group ggg and that were among those with the largest |E|'s and with a

^{*} For this purpose a program 'SFLS-5' used in the Department of Chemistry, Massachusetts Institute of Technology, was employed.

high number (NT) of Σ_2 interactions. In addition three reflections were assigned symbols indicative of unknown phases. Together with the origin reflections, they are:

h	k	l	E	NT	Phase or symbol
3	15	6	4.273	18	π
8	1	2	4.157	15	0
2	17	3	3.613	13	π
0	6	4	4.374	23	р
0	5	2	3.883	24	q
6	12	5	3.259	11	r

The results of the manual symbolic addition strongly suggested the relation $p=r=\pi$, but q could not be determined. The phase of q was arbitrarily set to zero and eighteen additional reflections, the phases of which had been determined in the manual symbolic addition, were selected as a starting set of phases. This set of phases was extended and refined in ten cycles as described by Oh & Maslen (1968) using the tangent formula (Karle & Hauptman, 1956). New reflections were introduced in the refinement by gradually lowering the minimum E value at the beginning of each cycle. At the end of this process the phases of 426 reflections with $|E| \ge 1.40$ had been determined, and an E Fourier synthesis was calculated. It revealed all the heavy atoms as peaks that were well above the noise level. None of the phases was subsequently found to be incorrect when compared with the phases corresponding to the fully refined structure. Structure factors incorporating a uniform isotropic temperature factor were calculated for all reflections with $(\sin \theta)/\lambda < 0.38 \text{ Å}^{-1}$, which yielded an R value of 36% and indicated that the structure deduced from the E map was essentially correct. The molecules are situated on symmetry centers, which requires that the asymmetric unit consist of two half molecules.

Structure refinement

Three cycles of isotropic full-matrix least-squares refinement reduced the agreement index to 16.5%. Next two cycles of refinement with anisotropic temperature factors were performed, causing a further reduction of R to 11%. A difference synthesis at this stage revealed the location of all the hydrogen atoms. Due to limitations of the computer core, it was not possible to refine the parameters of the heavy atoms and the hydrogen atoms of both molecules together. Accordingly it was decided to refine one molecule at a time, using the other molecule as a fixed contribution. After five cycles of full-matrix least squares, each of which consisted of a separate refinement of the two molecules, the shift per error was less than $\frac{1}{3}\sigma$ for the heavy atom parameters and less than $\frac{1}{2}\sigma$ for the hydrogen parameters. At this stage the refinement was halted, and the regular and weighted agreement indices, based on observed reflections only, were found to be

$$R: \Sigma |F_o - |F_c| | / \Sigma F_o = 0.045 ,$$

wR: $(\Sigma w (F_o - |F_c|)^2 / \Sigma w F_o^2)^{1/2} = 0.030$

A difference synthesis, calculated on the basis of the parameters at the end of the refinement, showed a few peaks and holes with a maximum value of $0.20 \text{ e. } \text{Å}^{-3}$ in the neighborhood of the non-hydrogen atoms. Elsewhere the map was rather flat with a background of $0.06 \text{ e. } \text{Å}^{-3}$. Tables 2 and 3 give the positional and anisotropic thermal parameters, respectively, of the heavy atoms, Table 4 gives the positional and isotropic thermal parameters of the hydrogen atoms, and Table 5 lists the observed and calculated structure factors. The numerical values in Tables 2, 3 and 4 of the estimated standard deviations (e.s.d.'s) are the values obtained from the least-squares refinement, and they were subsequently used for the calculation of the e.s.d.'s in the bond angles and distances.

Table 2. Coordinates of non-hydrogen atoms with e.s.d.'s in parentheses

Molecule I

	x	у	Z
0(1)	0.5173 (2)	0.6409 (1)	1.1788 (1)
O(2)	0.6225 (2)	0.6738(1)	0.6072(1)
N(1)	0·7405 (3)	0.6196 (1)	1.1872(2)
N(2)	0.4038 (3)	0.6484 (1)	0.5895 (2)
C(1)	0.7296 (3)	0·5845 (2)	1.2935 (3)
C(2)	0.6334 (3)	0·6464 (1)	1.1379 (2)
C(3)	0.6613 (3)	0·6835 (1)	1.0330 (3)
C(4)	0.5497 (3)	0.6828 (1)	0.9314 (3)
C(5)	0.5619 (3)	0.7276 (1)	0.8386 (3)
C(6)	0.4610 (3)	0.7215(1)	0.7279 (3)
C(7)	0.5031 (3)	0.6789 (1)	0.6374 (2)
C(8)	0.4276 (3)	0.6072 (1)	0.4973 (3)
C(9)	0.3116 (4)	0.5679 (2)	0.4882 (3)
C(10)	0.2968 (4)	0.5325 (2)	0.6021 (3)
C(11)	0.1733 (4)	0.4954 (2)	0.5915 (3)
C(12)	0.1602 (3)	0.4584 (1)	0.7018 (3)
	Mo	lecule II	
	x	У	Z
O(1′)	0.0112 (2)	0.6374(1)	0.1006(1)
O(2')	0.1236 (2)	0·6650 (1)	0.6640(1)
N(1')	0.2375(2)	0.6230 (1)	0.0932 (2)
N(2')	-0.0994(2)	0·6461 (1)	0.6769 (2)
C(1')	0.2289 (3)	0.5854 (1)	-0.0086(3)
C(2')	0.1280 (3)	0.6462 (1)	0.1412 (2)
C(3')	0.1576 (3)	0.6848 (1)	0.2463 (3)
C(4')	0.0205 (3)	0.6828 (1)	0.3455 (3)
C(5')	0.0650 (3)	0.7263 (1)	0.4417 (3)
C(6')	-0.0374 (3)	0.7184 (1)	0.5432 (3)
C(7')	0.0036 (3)	0.6744 (1)	0.6316 (2)
C(8')	-0.0807(3)	0.6057 (2)	0.7730 (3)
C(9')	-0.2008(4)	0.5675 (2)	0.7739 (3)
C(10')	-0.1965(3)	0.5279(1)	0.8789 (3)
C(11')	-0.3243(3)	0.4928 (1)	0.8795 (3)
C(12')	-0.3382 (3)	0.4577 (1)	0.9929 (3)

Discussion

Conformation

The unit cell contains two pairs of conformational isomers. Both molecules are based on a 28-membered alicyclic skeleton, which is rather planar as can be seen from an inspection of Fig.1. The Figure shows the projections of the atoms on the least-squares planes for

Fig. 2. Hydrogen bonding in a layer of the structure. Projection parallel to [010].

both molecules. The equation of the plane for molecule I is

$$8.43x - 7.01 y - 4.85 z = -4.14$$

and for molecule II

$$8.53 x - 0.21 v + 4.85 z = 2.32$$

with standard deviations of 0.58 and 0.47 Å respectively. The approximate dimensions of both rings are 12×8 Å. The rings resolve themselves into several planar elements, giving them the appearance of open ended boxes. This box-like shape of the rings arises from the fact that the relative orientation of the average planes through the amide groups is nearly perpendicular to the planes of the rings, being $89^{\circ} 24'$ in molecule I and $89^{\circ} 6'$ in molecule II.

Along the chain the following planar elements are found in succession within molecule I: the amide group (P) with atoms C(1) C(2) C(3) N(1) O(1), the tetramethylene chain (Q) with atoms C(3) C(4) C(5) C(6), the amide group (R) with atoms C(6) C(7) C(8) N(2) O(2) and the pentamethylene chain (S) with atoms C(8) C(9) C(10) C(11) C(12). In molecule II the same planar elements are found. They are the amide group (P') with atoms C(1') C(2') C(3') N(1') O(1'), the tetramethylene chain (Q') with atoms C(3') C(4') C(5') C(6'), the amide group (R') with atoms C(6') C(7') C(8') N(2') O(2') and

Table 3. Anisotropic temperature factor coefficients (×10⁵) with e.s.d.'s in parentheses $T = \exp \left[-(b_{11}h^2 + b_{22}k^2 + b_{33}l^2 + 2b_{12}hk + 2b_{13}hl + 2b_{23}kl)\right].$

	b_{11}	b22	b33	<i>b</i> ₁₂	b13	b23
O(1)	572 (21)	274 (5)	1084 (20)	-1 (8)	162 (16)	43 (7)
O(2)	495 (22)	337 (5)	1313 (23)	53 (8)	192 (17)	56 (8)
N(1)	724 (34)	244 (6)	1151 (32)	12 (12)	249 (27)	70 (11)
N(2)	607 (37)	243 (7)	1287 (34)	58 (13)	237 (29)	-19(11)
C(1)	1102 (47)	269 (9)	1333 (47)	112 (17)	251 (36)	121 (17)
C(2)	693 (36)	190 (6)	904 (32)	19 (13)	-32(28)	- 94 (11)
C(3)	808 (39)	196 (8)	1001 (36)	-22 (14)	171 (31)	-9(14)
C(4)	1067 (41)	169 (7)	978 (34)	- 38 (14)	73 (31)	25 (14)
C(5)	1082 (46)	213 (8)	1253 (41)	-81 (15)	67 (39)	12 (15)
C(6)	875 (41)	174 (7)	1296 (40)	-2(13)	211 (34)	87 (14)
C(7)	820 (39)	207 (7)	867 (32)	20 (15)	-22(29)	132 (12)
C(8)	1445 (51)	268 (9)	945 (41)	27 (18)	258 (38)	1 (17)
C(9)	1877 (62)	260 (9)	1056 (42)	43 (20)	9 (39)	- 58 (16)
C(10)	1660 (59)	256 (9)	1136 (46)	30 (19)	-52(40)	31 (17)
$\hat{\mathbf{C}}(11)$	1528 (52)	246 (8)	1368 (46)	-40(17)	-267(38)	44 (17)
C(12)	1183 (46)	231 (8)	1365 (44)	54 (16)	- 104 (35)	- 29 (16)
O(1')	515(22)	384 (6)	1126 (22)	-31 (9)	14 (18)	-136 (8)
O(2')	546 (23)	356 (5)	1243 (23)	45 (9)	31 (19)	66 (8)
N(1')	585 (33)	238 (6)	1109 (31)	3 (11)	-6 (26)	-68(10)
N(2')	717 (34)	264 (6)	1141 (32)	40 (12)	8 (27)	102 (11)
C(1')	1123 (46)	267 (9)	879 (38)	5 (16)	79 (33)	-26 (16)
C(2')	901 (39)	196 (7)	721 (31)	-1 (14)	163 (28)	46 (11)
C(3')	612 (35)	217 (8)	1037 (35)	12 (13)	1 (29)	46 (14)
C(4')	813 (39)	215 (8)	1044 (37)	-21 (14)	67 (32)	28 (15)
C(5')	1187 (45)	173 (8)	1065 (35)	- 58 (14)	118 (32)	-70 (14)
C(6')	920 (41)	209 (8)	1048 (38)	14 (14)	107 (31)	-65 (15)
C(7')	754 (37)	230 (7)	825 (32)	-16 (15)	155 (29)	- 95 (12)
C(8')	898 (43)	308 (9)	1303 (46)	25 (17)	118 (35)	122 (17)
C(9')	1331 (52)	250 (9)	1149 (45)	-1 (17)	86 (36)	- 19 (16)
C(10')	1298 (48)	280 (9)	1080 (41)	10 (17)	112 (34)	51 (16)
C(11')	1336 (49)	229 (8)	1319 (46)	6 (16)	129 (36)	- 98 (16)
C(12')	1257 (46)	254 (8)	1122 (40)	9 (16)	291 (34)	- 88 (16)

the pentamethylene chain (S') with atoms C(8') C(9')C(10') C(11') C(12'). Although it would appear that the large size of the molecules would permit large differences in conformation between the isomers, it is rather surprising to find good agreement in conformation for the major portions of the rings. In particular, the segment including the amide group (P), the tetramethylene chain (Q) and the amide group (R) is nearly identical in the two molecules.

A major difference, however, is found in the relative orientation of planar elements R and S; in molecule I the interplanar angle is 77° 23' and in molecule II, 30° 36'. The conformation of a polymer chain is usually described in terms of internal-rotation angles (Natta, Corradini & Bassi, 1961). The difference in conformation between the two isomers of $c[B-A]_2$ can be described by the internal-rotation angle N(2)C(8)- $C(9) \land C(8) C(9) C(10)$, the magnitudes of which are 112° 32' in molecule I and 173° 59' in molecule II. This difference in the conformation about the bond C(9)-C(8) is matched by a compensating difference in the rotation angles about C(1)-C(12), which, it may be noted, preserves the planarity of the polymethylene and amide elements. The internal rotation angle $C(11)C(12)C(1)\wedge C(12)C(1)N(1)$ has magnitude 179° 14' in molecule I and 116° 57' in molecule II. A detailed

Table 4. Hydrogen coordinates and temperature factors $T = exp(-B \sin^2 \theta / \lambda^2)$ with e.s.d.'s in parentheses

The methyl hydrogen atoms are labeled using a three-digit code in which the first two digits identify the carbon atoms to which they are bonded.

		Molecule I		
	x	У	z	В
H(001)	0.807 (2)	0.626 (1)	1.154 (2)	5·5 (9) Å ²
H(002)	0.335 (2)	0.654 (1)	0.602 (2)	2 ∙0 (6)
H(011)	0.743 (3)	0.606 (1)	1.376 (2)	8.6 (1.0)
H(012)	0.649 (3)	0.564 (1)	1.285 (2)	6.9 (9)
H(031)	0.748 (2)	0.677 (1)	1.003 (2)	4.3 (6)
H(032)	0.663 (2)	0.720 (1)	1.064 (2)	3.6 (6)
H(041)	0.549 (2)	0.648 (1)	0.895 (2)	4.2 (7)
H(042)	0.451 (2)	0.685 (1)	0.974 (2)	6.3 (7)
H(051)	0.550 (3)	0.764 (1)	0.889 (2)	8.5 (9)
H(052)	0.646 (2)	0.728 (1)	0.816 (2)	4.2 (7)
H(061)	0.455 (2)	0.758 (1)	0.683 (2)	5.8 (7)
H(062)	0.370 (2)	0.715 (1)	0.756 (2)	3.5 (5)
H(081)	0.436 (2)	0.625 (1)	0.423 (2)	5.4 (8)
H(082)	0.514 (2)	0.584 (1)	0.534 (2)	5.5 (7)
H(091)	0.216 (3)	0.587 (1)	0.477 (2)	8·0 (9)
H(092)	0.327(3)	0.542 (1)	0.421(2)	8.2 (1.0)
H(101)	0.386 (2)	0.515(1)	0.614(2)	6.3 (8)
H(102)	0.299(3)	0.555(1)	0.670(2)	7.8 (1.0)
H(111)	0.081(3)	0.520(1)	0.5/1(2)	$12 \cdot 1 (1 \cdot 1)$
H(112)	0.187(2)	0.468(1)	0.510(2)	9.8 (1.0)
H(121)	0.1/3(2)	0.481(1)	0.783(2)	/.9 (8)
H(122)	0.072(3)	0.438 (1)	0.001(2)	10.2 (1.0)
		Molecule II		
H(001')	0.313(2)	0.631(1)	0.121(2)	2.7 (6)
H(002')	-0.176(2)	0.656 (1)	0.645 (2)	5.3 (8)
H(011')	0.237 (2)	0.606 (1)	-0.082(2)	4.0 (6)
H(012')	0.137 (2)	0.266 (1)	-0.011(2)	3.7 (6)
H(031')	0.244 (2)	0.679 (1)	0.284 (2)	2.9 (5)
H(032')	0.159 (2)	0.725 (1)	0.207 (2)	4·9 (6)
H(041')	-0.031(2)	0.686 (1)	0.309 (2)	2.2 (5)
H(042')	0.048 (2)	0.646 (1)	0.391 (2)	4.9 (7)
H(051')	0.165 (2)	0.728(1)	0.483(2)	5.7 (7)
H(052')	0.052 (2)	0.762(1)	0.411(2)	5.2 (7)
H(061')	-0.134(2)	0.714(1)	0.504(2)	4.1 (6)
H(062')	-0.041(2)	0.748(1)	0.591(2)	$5 \cdot 1 (8)$
H(081')	-0.05/(3)	0.625(1)	0.864(3)	12.8 (1.2)
H(082')	-0.006(3)	0.584(1)	0.738(2)	7·2 (9)
H(091)	-0.213(3)	0.530(1)	0.090(2)	0.2 (9) 8.5 (1.0)
H(1012)	-0.276(3)	0.500(1)	0.765(2)	0.5 (1.0)
$\pi(101)$	-0.102(3)	0.501(1)	0.900(2)	9.0 (1.0)
$\Pi(102)$ $\Pi(111')$	-0.331(3)	0.300(1)	0.805(2)	6.2 (R)
$\pi(11)$	-0.331(2)	0.518 (1)	0.003(2) 0.877(2)	8.0 (0)
H(121)	-0.443(3)	0.438 (1)	0.986 (2)	7.6 (8)
U(122)	-0.335(3)	0.483(1)	1.068(2)	6.8 (8)
11(144)	-0333(4)	0 -03 (1)	1 000 (2)	00(0)

MAURITS G. NORTHOLT

Table 5. Observed and calculated structure factors ($\times 10$)

N 23408912468012468024507801245689123467802346780234681234678123467812347890246789123459788888999999011111111111111111111111111
1095 F.CAL 1422 1391 1422 1391 2200 250 2200 250 2200 250 230 250 230 250 237 738 249 251 2107 250 2109 250 2109 250 2109 250 2109 250 2109 250 2109 250 2109 250 2109 250 2109 250 2109 250 2109 2700 2000 2500 2010 250 2011 250 2011 270 2020 2201 2113 111 2120 2201 2121 142 2101 122 2201 212 2101 227
x99920211112222222222 11222222222222 112222222
$ \begin{array}{c} F U HS & F C A L A B \\ F C A C A B \\ C C C C C C C \\ C C C C C \\ C C C C C \\ C C C C \\ C C C C \\ C \\ C C \\ C C \\ C \\ C C \\ C$
$ \begin{array}{c} For 85 & F < CAL60 \\ A & 0 \\ A$
x444,15555555555555555555555555555555555
0 US FULAL FULAL FULAL 14 46 17 5 14 46 17 5 19 5 10
U U U U U U U U U U U U U U U U U U U
I UNS C FOUS FCAL C FOUS FCAL 1202 1223 C FOUS FCAL 2102 1208 I 120 - 1209 2088 I 120 - 1209 2088 I 120 - 1209 2088 I 121 - 2088 2044 I 120 - 169 1310 I 130 - 314 314 I 310 - 314 314 I 310 - 314 354 I 310 - 316 362 I 310 - 316 362 I 311 - 326 244 I 313 - 327 363 I 313 - 328 363 I 313 - 328 363
FUUS (ALB 1230) 1280 1280 1280 1280 1280 1280 1280 1280
x 1 4 5 9 7 9 5 4 5 7 8 5 4 5 7 1 2 3 8 6 4 5 2 1 0 2 3 4 5 6 6 4 1 1 2 3 4 5 4 3 2 0 3 4 4 3 2 5 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
F 100 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
10543210123456899745432101235678998765432101234756789987654321012345678987654321012345678985432101234567878985432
x = 4 = 4 = 4 = 4 = 4 = 4 = 5 5 5 5 5 5 5
6127 61277 6127 6127 6127 6127 61277 6127 6127 6127 6127 6127

analysis of the molecules in terms of least-squares planes and interplanar angles is presented in Table 6 and in terms of internal-rotation angles in Table 7. The existence of conformational isomers in large rings has been observed previously in the structure of cyclo(hexaglycyl) (Karle & Karle, 1963) and in such

.

Table 5 (cont.)

$ \begin{array}{c} K & F & \mathsf$
X. 20200
Juss F -42 $5n$ -42 -44 $5n$ -42 -44 $5n$ -42 -51 $5n$ -42 -51 $5n$ -42 -51 $5n$ -51 -51 $5n$ -51 -51 $5n$ -51 -51 $5n$ -51 -51 70 -60 -51 70 -60 -51 70 -60 -51 70 -60 -51 70 -60 -51 70 -60 -51 70 -60 -74 30 -74 -33 313 -74 -74 324 -74 -74 327 -74 -74 313 -74 -74 327 -74 -74 327 -74 -74 327 -74
K 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7
$ \begin{array}{c} AL \\ F 104 \\ F 1$
K4444444444444444444444444444444444444
$ \begin{array}{c} F C A A C A A A A A A A A$
K 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4
$ \begin{array}{c} F F F F F F F F$
<pre># 222111222222333333333333333333333344444444</pre>
Fous F (14) 102 163 337 -290 411 105 5139 -134 129
x 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
$ \begin{array}{c} \text{PRS} & \text{F} \left[\begin{array}{c} \text{S}_{1} \text{R}_{1} \\ \text{S}_{1} \text{R}_{2} \\ \text{S}_{2} \\ \text{S}_{1} \text{R}_{2} \\ \text{S}_{1} \text{R}_{2} \\ \text{S}_{2} \\ \text{S}_{1} \\ \text{S}_{2} \\ \text{S}_{1} \\ \text{S}_{2} \\ \text{S}_{$
H ? 1 0 2 3 4 5 7 5 4 5 7 5 4 5 7 5 4 5 1 0 1 2 3 4 5 6 5 4 5 20 1 2 3 4 5 5 5 4 5 7 1 2 3 7 6 5 4 5 7 5 4 5 7 5 4 5 7 5 4 5 7 5 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 6 4 5 7 1 2 3 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$ \begin{array}{c} F(112+1) \\ F(112$

molecules as cyclononylamine hydrobromide (Bryan & Dunitz, 1960). In the cyclic monomer and dimer of nylon 66 it would appear that the conformation of

minimum potential energy is one that is formed of a relatively small number of planar elements each of which consists of an inherently planar amide group, a

.

MAURITS G. NORTHOLT

Table 5 (cont.)

H 15713579345713937591570591570591571511111111111111111111	· 12*576543210134565431012345763210123457654123457657654123457657654123457657654123457
	x 333344444444444455555555555556666666666
030 • 22 27 0 1 1 2 1 5 1 2 8 27 1 8 27 1 8 27 1 8 27 1 8 27 1 8 27 1 9 27 2 1 9 27 1	9085 7081 1061 1061 1079 2031 2032 2033 2034 2035 2037 2038 2039 2039 2031 2032 2031 2032 2033 2034 2035 2030 2031 2032 2033 2033 2034 2035 2030 2031 2032 2033 2034 2035 2037 2038 2039 2030 2031 2031 2032 2033 2034 2035 2035 2035 2037 2038 2039 2039
L 78945555	F* -11 1122-8223534-23754489352244223372311376986249797442357248235644979745444243522482352449352244
H 2 * 1160 67 67 78 80 99 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12	H 0 1 2 4 5 7 6 5 4 3 2 1 0 2 3 4 5 5 4 9 1 0 1 2 3 4 5 6 5 2 1 0 1 2 3 4 5 6 7 2 1 0 1 2 3 4 5 6 7 2 1 0 1 2 3 4 5 6 7 2 1 0 1 2 3 4 5 6 7 2 1 0 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
F	$ \begin{array}{c} \text{ $ F$ Out $ 0$} \\ \text{ $ 8$ $ 2$} \\ \text{ $ 8$ $ 0$ $ 5$} \\ \text{ $ 9$ $ 0$ $ 5$} \\ \text{ $ 9$ $ 0$ $ 5$} \\ $ 9$ $ 0$ $ 1378 $ 0$ $ 1378 $ 0$ $ 1378 $ 0$ $ 1378 $ 0$ $ 1378 $ 0$ $ 1378 $ 0$ $ 1310 $ 245 $ 100 $ 245 $ 100 $ 245 $ 100 $ 245 $ 100 $ 245 $ 100 $ 245 $ 100 $ 101 $ 101 $ 1314 $ 0$ $ 110 $ 11$ $ 20 $ 11$ $ 100 $ 1175 $ 110 $ 100 $ 1175 $ 100 $ 100 $ 1175 $ 100 $$
4199 136888214046813482555	r
x33450089000111212222223334444455560060777788888889000001111122223334444455560060777788888889000001111122233344444555	" 1234202455421111111200000000000000000000000
FOR 2277727772777777777777777777777777777	$\begin{array}{c} x_{3} \\ x_{3} \\ x_{3} \\ x_{3} \\ x_{4} \\ x_{4} \\ x_{5} \\ x_{7} \\ x_{4} \\ x_{4} \\ x_{5} \\ x_{7} \\ x_{1} \\ x_{1} \\ x_{2} \\ x_{2} \\ x_{2} \\ x_{2} \\ x_{3} \\ x_{1} \\ x_{2} \\ x$
137 157 257 137 238 277 13 13 13 14 13 14 12 198 298 298 277 10 14 10 10 10 10 10 10 10 10 10 10 10 10 10	F 24: 7-0 20 R
x 3 4 5 5 7 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1	
UNC US F 0 2015 F 1 2015 F 2 2	$ \begin{array}{c} K & 1 & 1 & 1 & 1 \\ I & 1 & 1 & 1 & 1 \\ I & 2 & 2 & 2 \\ I & 2 & 3 & 3 & 3 \\ I & 3 & 3 & 3 & 3 & 3 \\ I & 3 & 3 & 3 & 3 & 3 \\ I & 3 & 3 & 3 & 3 & 3 \\ I & 3 & 3 & 3 & 3 & 3 & 3 \\ I & 3 & 3 & 3 & 3 & 3 \\ I & 3 & 3 & 3 & 3 & 3 $
g g H 4 4 2 2 8 2 2 2 4 2 2 7 0 7 1 1 1 5 2 8 6 4 1 6 4 6 5 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 6 1 1 6 2 8 7 8 7 7 2 6 4 6 6 6 1 1 6 2 8 7 8 7 7 2 6 4 6 6 6 1 1 6 2 8 7 8 7 7 2 6 4 6 6 6 1 1 6 2 8 7 8 7 7 2 6 4 6 6 6 1 1 6 2 8 7 8 7 7 2 6 4 6 6 6 1 1 6 2 8 7 8 7 7 2 6 4 6 6 6 7 8 7 7 2 6 4 6 6 6 7 8 7 7 2 6 4 6 6 6 7 8 7 7 2 6 4 6 6 6 7 8 7 7 2 6 4 6 6 6 7 8 7 7 2 6 4 6 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 6 7 8 7 7 2 6 4 6 7 8 7 7 2 6 4 6 7 8 7 7 2 6 4 6 7 8 7 7 7 2 6 4 6 7 8 7 7 7 2 6 4 6 7 8 7 7 7 2 6 4 6 7 8 7 7 7 2 6 4 6 7 8 7 7 7 2 6 4 6 7 8 7 7 7 2 6 4 6 7 8 7 7 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7	5 / 5 / 5 / 7 / 7 / 7 / 7 / 7 / 7 / 7 /
F 1 1 2 6 7 5 2 3 6 4 5 6 6 4 4 5 0 5 5 2 0 3 1 3 1 4 1 1 1 1 1 2 2 3 4 4 4 5 5 6 7 8 8 8 8 8 9 9 0 2 3 4 4 5 5 5 5 6 5 5 5 5 6 5 5 5 6 5 5 5 5	,;;;;],==,5;=01246=,=10245=;2;10123;;2;10345432;10234;;2;10234;;2;10234;;2;1023;1023
	<pre>K777777888888899999999991111111111111111</pre>
5507775224257107567675765355557 F 4 1 4 21-22 - 1 4 21-22 - 1 4 4 4 1297264254 - 1 1 1221542 - 1 1 122154254 - 1 1 122154 - 1 1 1 122154 - 1 1 1 122154 - 1 1 1 1 122154 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 098 7758 60 607 07 2 11 10 0 3 0 12 27 7 5 8 60 60 7 0 7 2 11 10 0 3 0 12 27 7 5 8 60 7 3 1 10 6 7 3 7 5 8 60 7 3 1 1 10 6 3 3 6 1 27 4 4 2 5 4 4 6 7 6 4 3 9 7 7 5 8 6 6 7 3 1 1 1 1 1 3 5 4 3 7 4 1 8 3 5 5 4 4 7 7 6 7 8 8 6 7 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	F
M43423204244150 1111111111111111111111111111111111	H01234432114012211
5 B22227252222264665555 B222272522222622665555 B2222725272522264665555 B222272527252765555 B22227222725555555 B22222222765577666665555 B22222222222222222222222222222	11111111111111111111111111111111111111
> 5775/5/	0 0
0 x334556677788801122334444455555778880 501222223446555778880 50122233444455555778880 50122233444455555778880 50122222234465555778880 501222222344655555778880 501222222344655555778880 50122222223445555577877777777777777777777777777777	
5 10 275 22 27 27 20 27 27 20 27 27 27 27 27 27 27 27 27 27 27 27 27	x 5 5 7.1 x 5 5 7.1 1.1 x 5 5 7.1 1.1 x 7.7 7.7 1.1 1.0 x 7.7 7.7 7.7 7.7 x 1.1 1.4 0.5 1.1 x 1.3 1.1 1.1 1.1 x 1.3 1.1 1.2 1.1 x 1.3 1.1 1.1 1.1 x 1.1 1.1 1.1 1.1 1.1 x 1.1 1.1 1.1 1.1 1.1 1.1 x 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
05 AL23#AA1200379792397A292409721501750710175071570910023300010 431001411117111	5 F 9400 946243 945 950 970 977 977 977 977 977 977 977 977 97
0 412151230232101111112222233556667777768899001122211111151777457444511111111111111111	N 0 1 2 4 5 2 1 0 1 2 2 1 0 1 2 4 3 2 1 0 2 4 3 2 1 0 2 4 5 2 1 2 3 2 0 2 3 2 0 1 2 3 2 1 0 2 2 0 9 0 0 0 0 0 0
	N0001111111122222333334444444445555555
- F	0 120 4 34 3 5 0 4 5 5 5 5 7 5 1 1 0 5 6 7 5 1 1 0 5 6 7 5 1 1 0 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5
	C 12 21124 - 46964362561435378690619204035659469400873376655522032604391894743586997439840087337665555220326043918947435869474358694743940088733766555522032604391894743586947435869474358694743586947435869474358694743586947435869474358694743586947435

planar sequence of methylene groups, or both. Thus within the constraints imposed by its cyclic configuration and the hydrogen bonds binding it to its neighbors

.

the molecule strives to assume the pure planar zigzag conformation that characterizes the linear polymer (Bunn & Garner, 1947; Natta & Corradini, 1960).

Bond distances and angles

The bond distances and angles are listed in Tables 8 and 9. The equivalent bond dimensions in the four amide groups are in general agreement with the idealized values of Corey & Pauling (1953). The spread in the values, however, is rather large, being 0.015 Å for

Table 6. Analysis of the planar elements in the molecules(a) Deviations (Å) from the least-squares plane

Plane					Molecule I		
Р О	C(1) C(3)	0·020 0·049	C(2) C(4)	-0.010 -0.050	$C(3) 0.017 \\ C(5) -0.047$	N(1) -0.025 C(6) 0.048	O(1) - 0.002
Ř S	C(6) C(8)	-0.014 - 0.016	C(7) C(9)	0·014 0·026	$\begin{array}{c} C(8) & -0.015 \\ C(10) & 0.006 \end{array}$	$ \begin{array}{c} N(2) & 0.015 \\ C(11) & -0.025 \end{array} $	$\begin{array}{c} O(2) & -0.001 \\ C(12) & 0.009 \end{array}$
Plane					Molecule II		
P' Q'	C(1') C(3')	0.002 0.032	C(2') C(4')	0.008 0.034	C(3') - 0.004 C(5') - 0.029	N(1') 0.001 C(6') 0.031	O(1') -0.002
Ř΄ S΄	C(6') C(8')	0·032 0·042	C(7') C(9')	-0.019 0.022	C(8') = 0.039 C(10') = -0.101	N(2') - 0.049 C(11') - 0.029	O(2') -0.004 C(12') 0.066

(b) Interplanar angles.

The least-squares plane through the atoms of the ring is indicated by T.

	P	Q	R	S	Т		P'	Q'	R'	S	T'
P	-	49°18′	89°24′	45° 58′	69°43′	P'	-	44°	89° 6′	81°24′	76°31′
Q		-	86° 28′	10° 7′	20° 55′	Qʻ		-	88°18′	62°18′	36° 7′
R			-	77°23′	89° <i>7′</i>	R'			-	30° 36′	73°29′
S -					28°11′	S'				_	75° 54′
T						T'					_

Table 7. Internal-rotation angles

. . .

	Molecule 1	Molecule 11
N(1)C(2)C(3)-C(2)C(3)C(4)	140° 35'	143°30′
C(2)C(3)C(4)-C(3)C(4)C(5)	168°17'	171°21'
C(3)C(4)C(5)-C(4)C(5)C(6)	172°0′	174° 53′
C(4)C(5)C(6)-C(5)C(6)C(7)	104° 12′	104°6 ′
C(5)C(6)C(7)-C(6)C(7)N(2)	139°45′	145° 38′
C(7)N(2)C(8) - N(2)C(8)C(9)	16 2 °4′	159°43′
N(2)C(8)C(9) - C(8)C(9)C(10)	112° 32'	173° 59′
C(8)C(9)C(10) - C(9)C(10)C(11)	176° 53′	176° 28′
C(9)C(10)C(11)-C(10)C(11)C(12)	177°43'	171°8′
C(10)C(11)C(12)-C(11)C(12)C(1)	109°13′	114° 34'
C(11)C(12)C(1)-C(12)C(1)N(1)	179°14′	116° 57′
C(12)C(1)N(1) - C(1)N(1)C(2)	154° 53'	144° 5'

Fig. 3. Projection of the structure parallel to [100]. Dashed lines indicate molecules of type I; full lines indicate molecules of type II.

the bond distances and 1° for the bond angles. A systematically smaller value is found for the O–C–N angle as compared with the O–C– α C angle.

Table 8. Bond distances (in Å) with e.s.d.'s in parentheses

	Molecule I	Molecule II
C(1) - N(1)	1.454 (5)	1.448 (4)
N(1) - C(2)	1.335 (4)	1.336 (4)
C(2) - O(1)	1.238 (3)	1.224 (3)
C(2) - C(3)	1.500 (4)	1.511 (4)
C(3) - C(4)	1.517 (4)	1.528 (4)
C(4) - C(5)	1.511 (5)	1.508 (5)
C(5) - C(6)	1.529 (4)	1.527 (4)
C(6) - C(7)	1.514 (4)	1.501 (4)
C(7) - O(2)	1.225 (3)	1.230 (3)
C(7) - N(2)	1.320 (4)	1.335 (4)
N(2) - C(8)	1.458 (4)	1.457 (5)
C(8)C(9)	1.494 (5)	1.508 (5)
C(9) - C(10)	1.532 (5)	1.507 (5)
C(10)-C(11)	1.517 (5)	1.521 (5)
C(11)-C(12)	1.521 (5)	1.519 (5)
C(12)-C(1)	1.515 (5)	1.517 (5)

Table 9. Bond angles

The e.s.d.'s given in parentheses refer to the last decimal position.

	Molecule I	Molecule II
C(1) - N(1) - C(2)	122·5 (3)°	123·7 (2)°
N(1) - C(2) - O(1)	120.8(2)	121.7 (2)
N(1) - C(2) - C(3)	116.8 (2)	116.0 (2)
O(1) - C(2) - C(3)	122.4 (2)	122.2 (2)
C(2) - C(3) - C(4)	113.5 (2)	113.3 (2)
C(3) - C(4) - C(5)	113.7 (3)	114.5 (3)
C(4) - C(5) - C(6)	112.6 (3)	111.0 (3)
C(5) - C(6) - C(7)	113.4 (2)	113.0 (3)
C(6) - C(7) - O(2)	122.0 (3)	123.2 (3)
C(6) - C(7) - N(2)	116.6 (3)	115.9 (3)
N(2) - C(7) - O(2)	121.4 (3)	120.9 (3)
C(7) - N(2) - C(8)	122.9 (3)	123.6 (3)
N(2) - C(8) - C(9)	111.6 (3)	111.5 (3)
C(8) - C(9) - C(10)	114.8 (3)	114.9 (3)
C(9) - C(10) - C(11)	113.0 (3)	112.5 (3)
C(10)-C(11)-C(12)	113.7 (3)	115.7 (3)
C(11)-C(12)-C(1)	112.0 (3)	114.5 (3)
C(12)-C(1)-N(1)	112.1 (3)	110.8 (3)

Nearly all the bond lengths between sp^3 hybridized carbon atoms are smaller than the accepted value of 1.526 Å (Lide, 1962) for this kind of bond. For both molecules the average value is 1.517 Å with a standard deviation of the mean amounting to 0.004 Å. The α C–C bond distances are close to the accepted value of 1.501 Å (Lide, 1962) for sp^3-sp^2 hybridized carbon–carbon bonds. The bond distances found in the tetramethylene groups are, for molecule I: 1.514, 1.529, 1.511, 1.517, 1.500 Å and for molecule II: 1.511, 1.528, 1.508, 1.527, 1.501 Å, which might be interpreted as evidence for alternation in bond character.

The average bond angle between adjoining carboncarbon bonds of sp^3 hybridization is 113° 20' in molecule I and 113° 48' in molecule II, both being considerably larger than the tetrahedral angle. Similar results concerning the bond distances and angles between sp^3 hybridized carbon atoms were observed in the study of the corresponding monomer (Northolt & Alexander, 1968).

For either molecule taken alone the average value (\overline{d}) of the C-H bond length is 1.004 Å with a $\sigma(\overline{d})$ of 0.016 Å in molecule I and 1.005 with a $\sigma(\overline{d})$ of 0.017 Å in molecule II. With a few exceptions most of the hydrogen temperature factors are larger than the isotropic temperature factors of the corresponding carbon atoms to which they are bonded.

Packing and hydrogen bonding

In addition to the planar character of the amide group and of the zigzag methylene chain segments, van der Waals forces are also assumed to be factors in establishing the shape of the skeleton of the molecules as observed. For instance, as can be seen in Fig. 2, the methylene group C(11) of molecule I centered on $(\frac{1}{2}, \frac{1}{2},$ 1) contacts the equivalent methylene group of molecule I centered at $(-\frac{1}{2}, \frac{1}{2}, 0)$ inside the ring of molecule II with position $(0, \frac{1}{2}, \frac{1}{2})$; the contact distance C(11)... C(11) is 3.853 Å. On the other hand, inside the ring of molecule I two close methyl-methyl contacts occur between molecules of type II, with the dis-

Table 10. Intermolecular methyl-methyl distances shorter than 4 Å

Code of symmetry operating on the second atom of the pair.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} -y & -z \\ -y & -z \\ -y & 1-z \\ -y & 1-z \end{array}$	$ \begin{array}{ccc} e & x \\ f & x \\ g & -x \\ h & 1-x \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Inside a layer	•	Betw	veen layers
C(8') C(1') a	3∙794 Å	C(3) - C(6')	e 3.818 Å
C(12') C(11') b	3.819	C(6) - C(3')	f 3.777
$C(12') - C(12') \qquad b$	3.800	C(5') C(2')	f = 3.882
C(4') C(1) c	3.994	C(2') C(6')	g 3.874
C(11) - C(11) c	3.853	C(3') C(6')	g 3.737
C(8)' C(1)' d	3.789	C(3') C(7')	g 3-999
		C(5) C(2)	h 3.902
		C(6) - C(2)	h 3.842
		C(6) C(3)	h 3.769

C(7) - - - C(3)

h

3.947

tances C(12')...C(12'), 3.800 Å and C(12')-C(11'), 3.819 Å.

Each molecule is connected by eight hydrogen bonds to four molecules of the other type, as shown in Fig. 2, thereby forming a layer parallel to (010). There are two of these layers per unit cell length b, related by the twofold screw axis, as can be seen in Fig. 3. The intermolecular methyl-methyl distances inside a layer and between layers that are shorter than the accepted sum of the van der Waals radii, 4.0 Å, are listed in Table 10.

Angles and distances involved in the hydrogen bonding between the molecules are listed in Table 11. The N...O distances range from 2.865 to 2.904 Å and the angles N-H...O lie between 166 and 173°. Both results agree well with the values found in the monomer (Northolt & Alexander, 1968).

Table 11. Dimensions of the hydrogen bonds

The hydrogen bonds are labeled as follows: (a) C(2)O(1)---H(001')N(1'), (b) C(7)O(2)---H(002')N(2'), (c) C(7')O(2')---H(002)N(2) and (d) C(2')O(1')---H(001)N(1).

Distances	<i>(a)</i>	(b)	(<i>c</i>)	(<i>d</i>)
N0	2.876	2·865	2·904	2∙866 Å
N-H	0.803	0·842	0·701	0∙767
Angles	2.080	2.039	2.208	2.113
N-HO	171°	166°	173°	168°
C-OH	141	152	145	143
C-ON	140	148	147	140

The author wishes to thank Professor Helmut Zahn for supplying the compound and Dr Leroy E. Alexander for reading the manuscript and for many helpful discussions. Thanks are also due to Dr Robert F. Stewart and Dr E. N. Maslen who respectively adapted the X-ray 67 programs system and S. Hall's symbolic addition program for use on the CDC 1604 computer at Mellon Institute.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOPSTRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). *Acta Cryst.* 8, 478.
- BRYAN, R. F. & DUNITZ, J. D. (1960). Helv. Chim. Acta, 43, 3.
- BUNN, C. W. & GARNER, E. V. (1947). Proc. Roy. Soc. A 189, 39.
- Corey, R. B. & PAULING, L. (1953). Proc. Roy. Soc. B141, 10.
- DIETRICH, H. VON, ZAHN, H. & SCHMIDT, F. (1957). Acta Cryst. 10, 477.
- HAUPTMAN, H. & KARLE, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. Monograph No.3.
- KARLE, I. L., HAUPTMAN, H., KARLE, J. & WING, A. B. (1958). Acta Cryst. 11, 257.
- KARLE, I. L. & KARLE, J. (1963). Acta Cryst. 16, 969.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635.
- LIDE, D. R. JR (1962). Tetrahedron, 17, 125.
- NATTA, G. & CORRADINI, P. (1960). Nuovo Cim. 15, Suppl. No.1, 9.
- NATTA, G., CORRADINI, P. & BASSI, I. W. (1961). J. Polymer Sci. 51, 505.
- Northolt, M. G. & Alexander, L. E. (1968). J. Phys. Chem. 72, 2838.
- OH, Y. L. & MASLEN, E. N. (1968). Acta Cryst. B24, 883.
- STEWART, J. M. & HIGH, D. (1965). X-ray 63 Programs System. Univ. of Maryland, College Park, and Univ. of Washington, Seattle.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- ZAHN, H. RATHGEBER, P., REXROTH, E., KRZIKALLA, R., LAUER, W., MIRÓ, P., SPOOR, H., SCHMIDT, F., SEIDEL, B. & HILDEBRAND, D. (1956). Angew. Chem. 68, 229.
- ZAHN, H. & SCHMIDT, F. (1959). Chem. Ber. 92, 1381.